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Abstract. With the advent of quantum computing, it urges the definition of a
cryptographic standard algorithm that can resist attacks from a quantum com-
puter. Inside this context is GeMSS, a multivariate quadratic signature scheme
based on the HFEv- construct. Schemes of this type have shown great po-
tential throughout the last two decades. This paper traces a comparison of
performance and security between GeMSS and other relevant digital signature
schemes, showing that despite of its slow signature generation and large key
pair, it has a very quick verification process and tiny signatures. It also proposes
a method for deriving the size of keys from the security parameter evaluated.

1. Introduction
In 1995, Peter Shor [Shor 1995] published an algorithm to run on a quantum computer
capable of solving, in polynomial time, the Integer Factorization Problem (IFP) and the
Discrete Logarithm Problem (DLP). These are considered hard mathematical problems
for classical computers and are the most used in today cryptosystems. Another enemy
of modern cryptography is Grover’s quantum algorithm [Grover 1996] that can speed up
the searching for cryptographic keys. Although quantum computers are not an immediate
threat, their power is unavoidable as soon as they have evolved enough, therefore it is
needed that quantum-safe cryptosystems are constructed and properly evaluated.

Given that scenario, cryptosystems based on the Multivariate Quadratic Problem
(MQ) are a great bet. Patarin and Goubin [Patarin and Goubin 1997] showed that this
problem is NP-complete and that there is no known, classical or quantum, algorithm that
can solve it in polynomial time [Bernstein 2009][Nielsen and Chuang 2002]. This credits
a potential security for such systems.

Our object of interest in this work is the usage of Multivariate Quadratic Public-
Key Cryptosystems (MPKC) for digital signatures as an efficient and reliable quantum-
safe alternative. We will be giving special attention to the Hidden Field Equations class
of MPKC with vinegar and minus modifiers (HFEv-). HFEv- is the base of the Great
Multivariate Signature Scheme (GeMSS) [Casanova et al. 2017], a candidate at NIST’s
Post-Quantum Cryptography Standardization process [Moody et al. 2019].

In the next section we present a theoretical overview of HFEv- as a digital signa-
ture scheme, presenting its basic characteristics and introducing some aspects of GeMSS.
In the third section, we show some characteristics of performance and security of GeMSS.
In the fourth section we present a comparison to other relevant cryptosystems. In the final
section some conclusions are drawn.



2. Great Multivariate Signature Scheme - GeMSS
The Hidden Field Equations scheme was first proposed by Patarin [Patarin 1996] after he
broke the security of the Matsumoto Imai Scheme A (MIA) [Patarin 1995]. HFE gener-
alizes the central map F, substituting the monomials for polynomials.[Andrade 2013].

With the finding that some basic MQ-trapdoors were insecure, some changes in
the basic formulations were proposed. A list of modifiers was then elaborated in order
to make the trapdoors faster and/or more secure. For the HFE family, the Vinegar (v)
and Minus (-) modifiers can turn it into a more secure version. Minus modifier acts
getting rid of some equations of the public-key while Vinegar modifier defines some extra
variables, called vinegar variables, parametrizing the central map F [Petzoldt et al. 2015].
Both modifiers can grant more security to the scheme, although they make the encryption
process slower [Andrade 2013]. With this, we can now build a trapdoor HFEv-.

The most famous HFEv- based scheme is QUARTZ, proposed by
[Patarin et al. 2001] to be a new alternative with greater security and very small
signatures. The disadvantage of QUARTZ is the really slow signing process of the order
of 10 seconds [Petzoldt et al. 2015]. This is due to the high order d of the polynomial
used (for QUARTZ d = 129), which leads to a very costly inversion of the central map.

The Great Multivariate Signature Scheme (GeMSS) is a multivariate scheme
proposed by [Casanova et al. 2017] based on QUARTZ [Patarin et al. 2001] and Gui
[Petzoldt et al. 2015]. Whilst cryptanalysis of multivariate schemes is constantly studied,
QUARTZ remains not having practical attacks against it. The attack using Gröbner bases
remains as the best known attack, and GeMSS exploits this in order to set its parameters,
delivering improved security and efficiency [Casanova et al. 2017].

2.1. Mathematical Foundations
Multivariate Cryptosystems objects are systems of multivariate quadratic polynomials, as
in Eq. (1) 
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The security of those schemes relies on the MQ Problem, which might be read
as: Given m multivariate quadratic polynomials p(1)(x), . . . , p(m)(x) in n variables
x1, . . . , xn, find a vector ~x(x1, . . . , xn) such that p(1)(~x) = · · · = p(m)(~x) = 0.

It also relies on the Extended Isomorphism of Polynomials (EIP) Problem, due
to the process of composition involved in the public-key generation. In an MPKC the
public-key P is created by composing the three private-keys: two affine invertible trans-
formations S : Fn 7→ Fn and T : Fm 7→ Fm with a central easily invertible quadratic map
F : Fn 7→ Fm. We thus have

P = T ◦ F ◦ S. (2)



To sign w ∈ Fn a message x ∈ Fm one uses the inverse functions of private-
keys F , S e T , thus computing, recursively, y = T−1(x) ∈ Fm, z = F−1(y) ∈ Fn and
w = S−1(y) ∈ Fn

w = S−1
(
F−1

(
T−1(x)

))
. (3)

To verify a signature one simply analyses if the vector of polynomials P generates
the signaturew, i.e., verify the validity of P (w) = x. If it holds, then it is a valid signature.

The signature schemes focused on this paper belongs to the BigField family of
multivariate schemes. In this type of scheme, the central map is chosen to be an easily
invertible map over a degree n extension field E of F, i.e., E = Fqn . In order to transform
F into a quadratic map, one has to use an isomorphism ϕ : Fn → E and its inverse ϕ−1

to map Fn → Fn [Petzoldt et al. 2015]. One then makes a composition

F̄ = ϕ−1 ◦ F ◦ ϕ. (4)

For the HFE scheme we use E = Fqn where q has a prime characteristic p, such
that q = pk, k ∈ N. HFE is therefore characterized by

Fn S7→ Fn ϕ−1

7→ En F7→ En ϕ7→ Fm T7→ Fm. (5)

The central map can be defined by [Patarin 1996]
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where i, j ∈ N; ξij, ψi, µ ∈ E; θ, σ, γ ∈ Z. In Eq. (6), ξijxq
θij+qσij are the quadratic terms,

ψix
qγi are the linear terms and µ are the constant terms. Thus f(x) is a polynomial in x

over Eqn , with degree d, where 0 ≤ θij, σij, γi ≤ d.

2.2. Design Rationale
The parameters chosen to GeMSS are listed below

• D, positive integer, degree of a secret polynomial, such that D = 2i for i ≥ 0, or
D = 2i + 2j for i 6= j, and i, j ≥ 0
• K, output size of hash function, in bits
• λ, security level
• m, number of equations in the public-key
• nb ite > 1, number of iterations in the verification and signature processes
• n, the degree of a field extension of F2

• v, the number of vinegar variables
• ∆, the number of minus (m = n−∆)

The secret-keys in GeMSS are composed by two invertible matrices (S, T) ∈
GLn+v(F2)×GLn(F2) and a polynomial F ∈ F2n [X, v1 . . . , vv] with structure given by
Eq. (7) ∑
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where Ai,j ∈ F2n , ∀i, j, 0 ≤ j < i < n, each βi : Fv
2 7→ F2n is linear and γ(v1, . . . , vv) :

Fv
2 7→ F2n is quadratic and v1, . . . , vv are the vinegar variables. The degree of F is D, the

maximum degree of its HFE polynomials.

Let (θ1, . . . , θn) ∈ (F2n)n be a basis of F2n over F2. Set ϕ : E =
∑n

k=1 ek ·
θk ∈ F2n −→ ϕ(E) = (e1, . . . , en) ∈ Fn

2 . We can now define a set of multivariate
polynomials f = (f1, . . . , fn) ∈ F2[x1, . . . , xn+v]

n derived from the HFEv polynomial
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The public key in GeMSS is a set of m quadratic equations in n + v variables,
that is, p = (p1, . . . , pm) ∈ F2 [x1, . . . , xn+v]

m where we denote the vinegar variables
as (v1, . . . , vv) = (xn+1, . . . , xn+v). The public-key is obtained from the secret-key by
taking the first m = n−∆ polynomials of:(

f1
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)
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and reducing it modulo
〈
x21 − x1, . . . , x2n+v − xn+v

〉
.

The main goal in the signing process is to solve:

p1 (x1, . . . , xn+v)− d1 = 0, . . . , pm (x1, . . . , xn+v)− dm = 0 (10)

for d = (d1, . . . , dm) ∈ Fm
2 . This is done by randomly sampling r = (r1, . . . , rn−m) ∈

Fn−m
2 and appending it do d, which gives (d, r) ∈ Fn

2 . One then computesD′ = ϕ−1(d′×
T−1) ∈ F2n and try to find a root (Z, z1, . . . , zv) ∈ F2n × Fv

2 of the multivariate equation:

F (Z, z1, . . . , zv)−D′ = 0 (11)

If a root Z ∈ F2n is found, then return (ϕ(Z),v) × S−1 ∈ Fn+v
2 . The process of find

the roots of Eq. (11) uses the Berlekamp algorithm [von zur Gathen and Gerhard 2003],
which leads to an estimated Õ(D log (q)) = Õ(nD) (for q = 2n) number of operations
in Fq.

3. Performance and Security

3.1. Performance

Any digital signature scheme based on HFEv- will have a very costly step that is the
inversion of the polynomial equation. This step is usually accomplished by the Berlekamp
algorithm. In GeMSS, this step has estimated complexity of Õ(nD) operations in F2n .

Given this,the most expensive part of GeMSS is the multiplication in F2n . The
generation of keys requiresO(n2 log (D)2+nv log (D)) multiplications and the signature
process requires Õ(nD) multiplications.



3.2. Security
Accordingly to [Petzoldt et al. 2015], the most important attacks against HFEv- signature
schemes to be considered are direct algebraic attacks, as the ones using Gröbner bases, and
Kipnis-Shamir attack [Shamir and Kipnis 1999], a key-recovery attack. One can also try a
direct signature forgery attack, essentially, try solving the system of non-linear equations:

p1(x1, . . . , xn+v)− d1 = 0

p2(x1, . . . , xn+v)− d2 = 0
...

pm(x1, . . . , xn+v)− dm = 0

x21 − x1 = 0
...

x2n+v − xn+v = 0

(12)

An exhaustive search method is described in [Bouillaguet et al. 2010] in which to recover
a solution of Eq. (12) requires 4 log2(m)2m binary operations. A Quantum Exhaustive
Search [Schwabe and Westerbaan 2016] can solve m binary quadratic equations in m bi-
nary variables using O(m) qubits, and evaluating O(2m/2m3) quantum gates.
An approximation method (AM) is described in [Lokshtanov et al. 2017] which leads to
an asymptotic complexity (lower-bounded) of

O∗(20.8765m) (13)

A hybrid approach (HA) that combines exhaustive search and Gröbner bases techniques
is found in BooleanSolve [Bardet et al. 2011], which is the fastest asymptotic algorithm
for solving system of non-linear Boolean equations. The Las-Vegas variant has expected
complexity of

O∗(20.792m) (14)

Alternatively, a quantum variety (qHA) has estimated complexity of [Faugere et al. 2017]

O(20.462m) (15)

3.2.1. Kipnis-Shamir attack

The Kipnis-Shamir key-recovery attack exploits the MinRank problem, which consists in
given a field K and m,n ∈ N, r < n, considering m matrices n× n over K: M1, . . .Mm,
find a linear combination α ∈ Km of minimal rank:

Rank

(∑
i

αiMi

)
≤ r. (16)

For this given system, it is found an estimated complexity of [Petzoldt et al. 2015]

O
(
n+ r + ∆ + v

r + ∆ + v

)ω

(17)

where 2 ≤ ω < 3 is the linear algebra constant and r = dlog2(D)e,



4. A security comparison
As we have seen in the previous section, the best attacks to GeMSS are intimate related
to the number of equations in the public-key. Given this, we now try a comparison be-
tween this algorithm best attacks (HA and qHA) and other relevant cryptosystems used
for digital signatures: RSA and ECDSA.

It is known that RSA relies on the Integer Factorization Problem. One uses the
general number field sieve (GNFS) to solve it with subexponential complexity given by

O

(
exp
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9

)1/3

+O(1)

)
(lnn)1/3(ln lnn)2/3

))
, (18)

where n is the number for factorization.

To solve the Discrete Logarithm Problem (DLP) in order to break ECDSA, one
can use Pollard’s Rho algorithm, which has complexity given by

O
(√

πo

2

)
, (19)

where o is the order of the group.

For GeMSS we have used a parameter analysis as proposed by the authors in their
reference implementation [Casanova et al. 2017], developing a mathematical evaluation
of the key length based on the parameters involved in the keys. This gave a general
overview of the algorithm behavior, although the lack of specific information made our
results differ a little from the authors report.

Given the complexities for the best known attacks obtained in previous equations,
we are able to evaluate the minimal key length, in bits, in order to achieve a given security
level. For this comparison we have matched the complexity for a brute force attack, i.e.
O(2x) with a established level of security, thus retrieving the results shown in Table 1.

Table 1. Comparison between brute force and minimum key length.

Brute Force DLP - Eq.(19) GNFS - Eq.(18) NIST HA - Eq.(14) qHA - Eq.(15)
80 160 851 1 024 34029 92401

112 224 1 853 2 048 71164 190521
128 256 2 538 3 072 95617 252316
192 384 6 707 7 680 226161 588828
256 512 13 547 15 360 412051 1064043

It can be noticed in a glance that GeMSS key size requirements are extremely large
compared to the classical algorithms. This is indeed a drawback of this cryptosystem,
although it has some quite interesting aspects that we mention in next section.

Another meaningful aspect to remember is that in face of a quantum computer,
every cryptographic algorithm should at least have its key length doubled. That is due
to Grover’s algorithm, which is capable of finding a n-bits key with complexity O(

√
n)

through brute force. The performance is directly proportional to the key length. Figure 1
depicts a trade-off between security and key bit length, with the approximate interpolation
polynomials from the data in Table 1.
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Figure 1. Comparison between brute force and minimum key length.



5. Conclusions

In this paper, we have discussed the trade-off between performance and security for
GeMSS, a competitor in the second round of the post quantum standardization process
promoted by the National Institute of Standards and Technology (NIST). This is already
a great conquer for the cryptosystem, but does not take away its main problems.

GeMSS proves that HFEv- schemes continue to be a good bet regarding quantum-
safe digital signature schemes, even after more that 20 years of constant and deep studies.
The main reason for this is that it exploits the vulnerabilities found in QUARTZ in order
to deliver a new adaptation with better performance and security, although the algorithm
core, i.e, inversion of the central polynomial equation, continue to be a bottleneck for
schemes of this type.

Despite GeMSS being a very prominent system for a quantum world, it has some
really bothering drawbacks that are its very slow key pair and signature generation and
the size of the keys, as we have shown in the previous section. This contrasts with its fast
signature verification and tiny signature size. The best implementation, using an Intel(R)
Core(TM) i7-6600U CPU @ 2.60GHz processor gives the following results, accordingly
to the security level [Casanova et al. 2017]

Security
Level 128 bits 192 bits 256 bits

Key pair
Generation 42 ms 166 ms 424 ms

Signing
(mean values) 260 ms 694 ms 1090 ms

Verification 41 µs 117 µs 336 µs
Public key
size 417408 bytes 1304192 bytes 3603792 bytes

Size of
private key 14208 bytes 39440 bytes 82056 bytes

Size of
signature 48 bytes 88 bytes 104 bytes

Table 2. Main aspects for each security level using an Intel(R) Core(TM) i7-6600U
CPU @ 2.60GHz processor

As the quantum era becomes closer, it is needed to focus on the research of cryp-
tosystems that are capable of protecting our identity and privacy, with performance at
least as good as the ones we use nowadays. Further investigation has to be done in or-
der to determine better implementations and parameter choices in order to guarantee our
security.
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