
A Secure White Box Implementation of AES
Against First Order DCA

Ana Clara Zoppi Serpa1, Giuliano Sider1, Hayato Fujii1,
Félix Carvalho Rodrigues1, Ricardo Dahab1, Julio López1

1Institute of Computing – University of Campinas (Unicamp)
Av. Albert Einstein, 1251 – 13083-852 – Campinas – SP – Brazil

{hayato.fujii,felix.rodrigues,rdahab,jlopez}@ic.unicamp.br,
{ra165880, ra146271}@students.ic.unicamp.br

Abstract. The white box threat model considers an attacker with complete ac-
cess to the implementation and execution environment of a cryptographic algo-
rithm. Aiming towards secure implementation of cryptographic algorithms in
this context, several implementations of the AES cipher were proposed in the
literature. However, they were proven vulnerable to implementation specific at-
tacks, as well as to refined side-channel and more robust attacks that do not rely
on implementation knowledge of the cipher, such as DCA (differential computa-
tion analysis). In this paper we present a white box implementation of the AES
cipher with recently proposed DCA countermeasures [Lee et al. 2018]. We pro-
vide a comparison of the performance difference these countermeasures incur
in practice and report some preliminary experimental results on the security of
our implementation.

1. Introduction

Traditionally it is assumed that encryption and decryption are performed in trusted envi-
ronments and attackers can only compare plaintext and ciphertext pairs to mount an at-
tack. However, this scenario does not reflect reality, especially with the increased reliance
in mobile computer systems. In practice, malicious users (or malware) can have com-
plete access to the implementation and execution environment of the algorithms, hence
the need to consider such context in the design of secure cryptographic algorithms.

The concept of white box cryptography was first introduced in [Chow et al. 2003]
with the proposal of a white box version of the AES cipher [NIST 2001] which attempts to
hide a secret key by replacing intermediate operations with protected lookup tables. Such
implementation considers a scenario in which an attacker has complete access to the full
implementation and execution environment of a cryptographic algorithm, the white box
context. However, this proposed implementation was shown to be susceptible to practical
algebraic attacks [Billet et al. 2005], and every new proposed white box implementation
of the AES cipher [Karroumi 2011] was also successfully attacked [Lepoint et al. 2014].
Since all the reported attacks depend on knowledge of the inner workings of each im-
plementation, the industry became secretive regarding cryptographic white box designs.
Albeit security through obscurity thwarts implementation specific attacks, novel tech-
niques which do not require implementation specific knowledge emerged, such as the
DCA (Differential Computation Analysis) attack [Bos et al. 2016].



A Differential Computation Analysis (DCA) [Bos et al. 2016] attack is a powerful
adaptation of a DPA (Differential Power Analysis) [Kocher et al. 1999] attack in a white
box context. In a DPA attack, an attacker collects power consumption signals during a
cryptographic algorithm’s execution and correlates them to the algorithm’s intermediate
operations, attempting to identify the key. A DCA attack is similar, but exploits the white
box environment’s advantages: instead of collecting power consumption signals, it col-
lects software execution traces of memory positions and values stored in them. Then,
it computes correlation coefficients between stored key-dependent values and hypotheti-
cal key values to pinpoint the most likely key candidate, i. e., the key candidate with the
maximum correlation coefficient.

In this paper we describe a white box software implementation of the AES cipher
which applies the static masking technique described in [Lee et al. 2018] as a countermea-
sure against DCA attacks. We present performance results of different masking levels, as
well as experiments regarding first order DCA attacks on our implementation, confirming
the reported protection against them.

2. White Box AES Implementation

The AES cipher encrypts (or decrypts) a block of 128 bits with a given secret key. Given
a block of 128 bits (a state), the algorithm performs the following steps in each round:

ShiftRows A byte permutation of the state (16 bytes);
AddRoundKey A XOR between the current state and a round key;
SubBytes A byte substitution operation, based on a map called S-box;
MixColumns Each word of the state is multiplied by a 4× 4 byte matrix MC.

The complete description of the four operations are given in [NIST 2001], as well the key
derivation process, which generates all round keys given a master key.

For the white box implementation of the AES algorithm, the following description
is considered: an AES regular round applies ShiftRows, AddRoundKey, SubBytes and
MixColumns, in that order, to a 128-bit intermediate state. The AES encryption (with key
size of 128 bits) comprises of 10 rounds: 9 regular ones and then the last round, which
consists of ShiftRows, AddRoundKey, SubBytes and another AddRoundKey operation. For
more details on this description of AES, please refer to [Chow et al. 2003].

2.1. White Box Software Implementation with Lookup Tables

Since in the white box context the attacker has access to the execution environment and
can, for instance, check memory values, the main idea of a white box AES implementa-
tion is to hide the key and the intermediate values instead of computing and storing them
in variables. To achieve that, the algorithm is divided in two parts, the white box compiler
and the white box implementation. The white box compiler is responsible for generating
lookup tables that, for each possible state byte xi, contain the result of part of the algo-
rithm’s operations on xi. The white box implementation then uses those tables to perform
lookups in the correct sequence for encryption (or decryption).

The lookup tables will be referred as type II, type III, type IV and type V through-
out this paper, following the notation of Chow et al. [Chow et al. 2003]. Simply using
lookup tables implementing the AES operations, however, is still insufficient to protect
the algorithm, since if the attacker knows the table generation process, it is simple to



extract the key from the tables. In order to prevent that, input/output encodings and in-
put/output mixing bijections are created [Chow et al. 2003], which are applied prior and
after a table’s core operation. An encoding is a non-linear mapping, while a mixing bi-
jection is an invertible matrix in which all its 4× 4 non-overlapping sub-matrices are also
invertible. Encodings and mixing bijections must be chosen in a way that they can be
reversed from one table to another, so that the core operations accurately reflect the AES
specification. Chow et. al refer to this as networked encodings/bijections.

Type II tables perform AddRoundKey, SubBytes and multiplications of a state’s
byte by a column of the MC matrix. Thus, to obtain the MixColumns’ correct result, type
II tables’ outputs must be XORed. These operations are performed by sets of type IV
tables (also referred to as XOR networks); each type IV table operates with two input
nibbles. Usage of the type III tables follows type II transformation and their XOR net-
works. Type III tables do not map a core operation, only reverting a type II’s output en-
codings/bijections and applying new ones (which are reverted by the next type II tables).
After the type III tables, more type IV tables must be applied. Hence, a regular AES
round is composed by ShiftRows (performed without lookup tables), type II tables (round
operations), type IV tables (type II’s XOR networks), type III tables and more type IV ta-
bles (type III’s XOR networks). The last round, which lacks MixColumns and comprises
two AddRoundKey operations, relies on type V tables. Type I tables [Chow et al. 2003],
further divided into type Ia and Ib tables, are related to external encodings, and thus out
of the scope of this work. Figure 1 illustrates type II, III, IV and V tables usage.

Figure 1. A scheme of the AES encryption in a white box context.

3. Static Masking
A DCA (differential computation analysis) attack consists in collecting memory posi-
tions and stored values to compute correlation coefficients between key guesses and key-
dependent collected values, where the maximum correlation coefficient shows which key
candidate is most likely to be the correct secret key of the white box implementation under
attack. These correlation coefficients are calculated using Walsh transforms. A function’s



Walsh transform indicates whether it is a balanced mth order correlation immune func-
tion. A function is said to be mth order correlation immune if every subset of n input
variables x1, x2, ..., xn, n ≤ m, is statistically independent of f(x1, x2, ..., xn), where f is
a boolean function. Considering this concept, the DCA attack exploits the fact that white
box AES encodings are not correlation immune and thus the correlation coefficient for a
correct key candidate will be easily distinguishable among all coefficients.

The static masking countermeasure proposal [Lee et al. 2018] focuses in reduc-
ing the correlation between intermediate values and the key before applying encodings.
Towards this goal, uniformly random masks are generated prior to the tables’ genera-
tion such that each byte i has an associated mask to be selected when needed. Lee et
al. [Lee et al. 2018] claim that, since masking techniques were originally used to force
power consumption signals to be uncorrelated with respect to secret keys to thwart DPA
(Differential Power Analysis), applying static masking to a white box AES implementa-
tion can reduce correlation coefficients and thwart key identification in DCA. They also
present 3 security levels and their changes on Chow et. al’s design:

Level 1. Type II tables are replaced by type II-M tables, which perform the AES
operations over a byte, like the type II tables, but also XOR the result with a random mask
before applying the output mixing bijections and the output encodings.

Level 2. In addition to the changes from level 1, type III tables with larger input
encodings replace type III tables on the 9th round. Type IVs with larger input encodings
replace type IVs in round 9 XOR networks. Type V with larger input encodings replaces
type V used in the 10th round.

Level 3. In addition to level 2 masking changes, type II-M tables with larger input
encodings are required for round 3; type IIIs are replaced by type IIIs with larger input
encodings in round 1 and type IVs are replaced by type IVs with large input encodings in
round 1. The changes regard only encoding sizes, not the tables’ core operations.

4. Applying a First Order DCA Attack on our Implementations
After implementing four variants of white box AES (one unmasked and three masked),
we mounted a first order DCA attack using the tools from [Bos et al. 2016]. The attack
output consists of 10 probable keys regarding maximum sum of correlation coefficients
and 10 probable keys considering maximum correlation coefficients themselves.

For our first experiment, we compiled single instances of each implementation,
all embedded with an example key provided in the AES specification [NIST 2001],
2b7e151628aed2a6abf7158809cf4f3c, and varied the number of collected
traces and attack positions considering experiments from [Bos et al. 2016] and the attack
tools’ available options. For the unmasked implementation, which we refer to as WBAES,
when collecting 1000 traces the correct key was among the 10 most likely keys regard-
ing correlation coefficient sum. Furthermore, all bytes of the most probable candidate
key were correct except for the first and the last one. For the masked implementations,
which we refer to as WBAES-M1 (masking level 1), WBAES-M2 (masking level 2) and
WBAES-M3 (masking level 3), however, no key bytes were recovered. Table 1 shows
this experiment’s results. All attacks were performed on an Intel i7-7500U CPU, clocked
at 2.70 to 2.90 GHz, with 8 GB of RAM. The trace collection and attack times were
measured using the time command.



Table 1. DCA attack recovered keys and times, “%”” refers to bytes recovered.
Correct key: 2b7e151628aed2a6abf7158809cf4f3c

Implementation Traces Collection Attack Most likely key found %
WBAES 500 23m52.321s 2m59.800s ee7e151628aed2a6abf7158809cf4f3c 94%
WBAES 1000 47m0.327s 5m52.476s 847e151628aed2a6abf7158809cf4f7d 88%
WBAES-M1 500 32m52.781s 4m47.168s 16e172bb6c31306999c2ef89db2669e3 0%
WBAES-M1 1000 66m13.026s 8m49.485s 1e25e6f36c718db71fc262f15ee6b14a 0%
WBAES-M1 2000 145m3.757s 18m17.860s 1140e654432ae672ef6a62d11ce6a908 0%
WBAES-M2 2000 158m51.509s 19m26.333s 62cffc8f4371e6b76ac2428975e63b4a 0%
WBAES-M3 2000 160m57.974s 16m43.609s 1eb4e60725718d9b540f62f1d1e3aec5 0%

Our second experiment replicates the one described in [Lee et al. 2018]. We com-
piled 20 instances of each implementation (keys were generated by a PRNG). For the un-
masked instances, with 200 traces the probable keys according to maximum correlation
coefficient sum had 2 to 5 wrong bytes whilst the probable keys according to maximum
correlation coefficient had 1 to 3 wrong bytes. For the masked instances, 10000 traces
were collected and no key bytes were recovered, as reported in [Lee et al. 2018].

Table 2. Replication of Lee et al. [Lee et al. 2018] DCA experiments.

Implementation Traces Collection (avg) Attack (avg) Average number of key bytes found
WBAES 200 16m11.595s 1m10.507s 14.05 (= 88%)
WBAES-M1 10000 858m14.048s 36m30.370s 0

5. Performance Results
In order to analyze each masking level’s performance, we compiled 32 instances (each in-
stance uses a different, randomly generated, secret key) for each protection level. Table 3
shows the average cycles per byte (CPB) required to decrypt a 128-bit block of data, for
215 iterations. Each repetition took the previous output as the input, except the first, in
which the input was extracted from /dev/urandom. Tests were executed on a machine
with a A53-based quad-core processor clocked at 1.15GHz. This CPU features 64KiB of
L1 and 512KiB of L2 cache memory, with 2GB of RAM available. On the software side,
the Linux kernel version 3.10.107 is used. The ciphers were implemented in C/C++, and
compiled with gcc 5.4.0. Cycle count was measured using the Performance Monitoring
Unit present in ARM CPUs.

Table 3. Performance comparison for different masking level implementations.

Implementation Table lookups Tables Size (bytes) Performance (cycles per byte)
WBAES 2032 299008 23603.70
WBAES-M1 3328 593920 46340.20
WBAES-M2 3328 1642496 46525.50
WBAES-M3 3328 2691072 46131.49

Performance was similar for all levels of protection. This is due to the fact that
while the size of tables increased between each masking level, the actual number of table
lookups remained constant. Implementation size might lead to a difference in perfor-
mance in hardware with larger available cache memory.
6. Conclusions
In this paper we report performance results and preliminary security analysis of our white
box software implementation of the AES cipher [Chow et al. 2003] together with coun-
termeasures (the static masking cases from [Lee et al. 2018]) against DCA attacks. Re-
garding performance, masked implementations spent about twice the cycles (per byte)



of the unmasked one. For the unmasked implementation, first order DCA attacks were
successful: the correct key was listed among the most likely keys recovered. How-
ever, no key bytes were recovered for the masked implementations. Recently a few at-
tacks [Rivain and Wang 2019, Zeyad et al. 2019] were successful in recovering key bytes
of a publicly available CASE 1 implementation of Lee et al.1. Since attack tools are not
available, an interesting future direction would be to adapt existing attack tools to imple-
ment these attacks, and propose modifications to the static masking to prevent them.

7. Acknowledgments
This research was supported by Samsung Eletrônica da Amazônia Ltda., through the
“White Box Cryptography” project, within the scope of the Informatics Law No. 8248/91.

References
Billet, O., Gilbert, H., and Ech-Chatbi, C. (2005). Cryptanalysis of a white box AES implemen-

tation. In Handschuh, H. and Hasan, M. A., editors, Selected Areas in Cryptography, pages
227–240, Berlin, Heidelberg. Springer.

Bos, J. W., Hubain, C., Michiels, W., and Teuwen, P. (2016). Differential computation analysis:
Hiding your white-box designs is not enough. In Gierlichs, B. and Poschmann, A. Y., edi-
tors, Cryptographic Hardware and Embedded Systems – CHES 2016, pages 215–236, Berlin,
Heidelberg. Springer.

Chow, S., Eisen, P., Johnson, H., and Van Oorschot, P. C. (2003). White-box cryptography and
an AES implementation. In Nyberg, K. and Heys, H., editors, Selected Areas in Cryptography,
pages 250–270, Berlin, Heidelberg. Springer.

Karroumi, M. (2011). Protecting white-box AES with dual ciphers. In Rhee, K.-H. and Nyang,
D., editors, ICISC 2010, pages 278–291, Berlin, Heidelberg. Springer.

Kocher, P., Jaffe, J., and Jun, B. (1999). Differential power analysis. In Wiener, M., editor,
Advances in Cryptology — CRYPTO’ 99, pages 388–397, Berlin, Heidelberg. Springer.

Lee, S., Kim, T., and Kang, Y. (2018). A masked white-box cryptographic implementation for pro-
tecting against differential computation analysis. IEEE Transactions on Information Forensics
and Security, 13(10):2602–2615.

Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., and Preneel, B. (2014). Two attacks on a white-
box AES implementation. In Lange, T., Lauter, K., and Lisoněk, P., editors, Selected Areas in
Cryptography – SAC 2013, pages 265–285, Berlin, Heidelberg. Springer.

NIST (2001). Announcing the Advanced Encryption Standard (AES). National Institute of
Standards and Technology. Federal Information Processing Standards 197, http://csrc.
nist.gov/publications/fips/fips197/fips-197.pdf.

Rivain, M. and Wang, J. (2019). Analysis and improvement of differential computation attacks
against internally-encoded white-box implementations. Cryptology ePrint Archive, Report
2019/076. https://eprint.iacr.org/2019/076.

Zeyad, M., Maghrebi, H., Alessio, D., and Batteux, B. (2019). Another look on bucketing attack to
defeat white-box implementations. In Constructive Side-Channel Analysis and Secure Design,
pages 99–117, Cham. Springer.
1https://github.com/SideChannelMarvels/Deadpool/tree/master/wbs_aes_lee_case1

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://eprint.iacr.org/2019/076
https://github.com/SideChannelMarvels/Deadpool/tree/master/wbs_aes_lee_case1

	Introduction
	White Box AES Implementation
	White Box Software Implementation with Lookup Tables

	Static Masking
	Applying a First Order DCA Attack on our Implementations
	Performance Results
	Conclusions
	Acknowledgments

